Dinamakan Pakar Anotasi Pengiktirafan Entiti

Pengekstrakan / Pengiktirafan Entiti Dikuasakan Manusia untuk melatih model NLP

Buka kunci maklumat kritikal dalam data tidak berstruktur dengan pengekstrakan entiti dalam NLP

Perkhidmatan pengiktirafan entiti yang dinamakan

Pelanggan Pilihan

Memperkasakan pasukan untuk membina produk AI yang terkemuka di dunia.

Amazon
Google
microsoft
Cognit
Terdapat permintaan yang semakin meningkat untuk menganalisis data tidak berstruktur untuk menemui cerapan yang belum ditemui.

Melihat kepada kelajuan data dijana; yang mana 80% daripadanya tidak berstruktur, terdapat keperluan di lapangan untuk menggunakan teknologi generasi seterusnya untuk menganalisis data dengan berkesan dan mendapatkan cerapan bermakna untuk membuat keputusan yang lebih baik. Pengiktirafan Entiti Dinamakan (NER) dalam NLP tertumpu terutamanya pada pemprosesan data tidak berstruktur dan mengklasifikasikan entiti yang dinamakan ini ke dalam kategori yang telah ditetapkan.

IDC, Firma Penganalisis:

Pangkalan kapasiti storan yang dipasang di seluruh dunia akan mencapai 11.7 zettabait in 2023

IBM, Gartner & IDC:

80% daripada data di seluruh dunia adalah tidak berstruktur, menjadikannya usang dan tidak boleh digunakan. 

Apa itu NER

Menganalisis data untuk menemui cerapan bermakna

Pengiktirafan Entiti Dinamakan (NER), mengenal pasti dan mengelaskan entiti seperti orang, organisasi dan lokasi dalam teks tidak berstruktur. NER mempertingkatkan pengekstrakan data, memudahkan perolehan semula maklumat dan memperkasakan aplikasi AI lanjutan, menjadikannya alat penting untuk dimanfaatkan oleh perniagaan. Dengan NER, organisasi boleh memperoleh cerapan berharga, meningkatkan pengalaman pelanggan dan memperkemas proses.

Shaip NER direka bentuk untuk membolehkan organisasi membuka kunci maklumat penting dalam data tidak berstruktur & membolehkan anda menemui hubungan antara entiti daripada penyata kewangan, dokumen insurans, ulasan, nota doktor, dll. Dengan pengalaman yang kaya dalam NLP & linguistik, kami dilengkapi dengan baik untuk menyampaikan cerapan khusus domain untuk mengendalikan projek anotasi dalam sebarang skala

Pengiktirafan entiti bernama (ner)

Pendekatan NER

Matlamat utama model NER adalah untuk melabel atau menandakan entiti dalam dokumen teks dan mengkategorikannya untuk pembelajaran mendalam. Tiga pendekatan berikut biasanya digunakan untuk tujuan ini. Walau bagaimanapun, anda boleh memilih untuk menggabungkan satu atau lebih kaedah juga. Pendekatan yang berbeza untuk mencipta sistem NER ialah:

berasaskan kamus
sistem

Sistem berasaskan kamus
Ini mungkin pendekatan NER yang paling mudah dan asas. Ia akan menggunakan kamus dengan banyak perkataan, sinonim dan koleksi perbendaharaan kata. Sistem akan menyemak sama ada entiti tertentu yang terdapat dalam teks juga tersedia dalam perbendaharaan kata. Dengan menggunakan algoritma pemadanan rentetan, semakan silang entiti dilakukan. Tdi sini adalah keperluan untuk sentiasa meningkatkan set data perbendaharaan kata untuk fungsi berkesan model NER.

Berasaskan peraturan
sistem

Sistem berasaskan peraturan
Pengekstrakan maklumat berdasarkan set peraturan yang telah ditetapkan, iaitu

Peraturan berasaskan corak – Seperti namanya, peraturan berasaskan corak mengikut corak morfologi atau rentetan perkataan yang digunakan dalam dokumen.

Peraturan berasaskan konteks – Peraturan berasaskan konteks bergantung pada makna atau konteks perkataan dalam dokumen.

Sistem berasaskan pembelajaran mesin

Sistem berasaskan pembelajaran mesin
Dalam sistem berasaskan pembelajaran mesin, pemodelan statistik digunakan untuk mengesan entiti. Perwakilan berasaskan ciri bagi dokumen teks digunakan dalam pendekatan ini. Anda boleh mengatasi beberapa kelemahan daripada dua pendekatan pertama kerana model ini boleh mengenali jenis entiti walaupun terdapat sedikit variasi dalam ejaannya untuk pembelajaran mendalam.

Bagaimana kita boleh menolong

  • NER Am
  • NER perubatan
  • Anotasi PII
  • Anotasi PHI
  • Anotasi Frasa Utama
  • Anotasi Kejadian

Aplikasi NER

  • Sokongan Pelanggan Diperkemas
  • Sumber Manusia yang Cekap
  • Klasifikasi Kandungan Ringkas
  • Meningkatkan penjagaan pesakit
  • Mengoptimumkan Enjin Carian
  • Pengesyoran Kandungan Tepat

Gunakan Kes

  • Sistem Pengekstrakan & Pengecaman Maklumat
  • Sistem Soalan-Jawapan
  • Sistem Terjemahan Mesin
  • Sistem Ringkas Automatik
  • Anotasi Semantik

Proses Anotasi NER

Proses anotasi NER secara amnya berbeza dengan keperluan pelanggan tetapi ia melibatkan:

Kepakaran domain

Fasa 1: Kepakaran domain teknikal (Memahami skop projek & garis panduan anotasi)

Sumber latihan

Fasa 2: Melatih sumber yang sesuai untuk projek

dokumen Qa

Fasa 3: Kitaran maklum balas dan QA bagi dokumen beranotasi

Kepakaran kami

1. Pengiktirafan Entiti Dinamakan (NER) 

Pengiktirafan Entiti Dinamakan dalam Pembelajaran Mesin ialah sebahagian daripada Pemprosesan Bahasa Semulajadi. Objektif utama NER adalah untuk memproses data berstruktur dan tidak berstruktur serta mengelaskan entiti yang dinamakan ini ke dalam kategori yang telah ditetapkan. Beberapa kategori biasa termasuk nama, lokasi, syarikat, masa, nilai kewangan, acara dan banyak lagi.

1.1 Domain Umum

Pengenalpastian orang, tempat, organisasi dan lain-lain dalam domain umum

Domain insurans

1.2 Domain Insurans 

Ia melibatkan pengekstrakan entiti dalam dokumen insurans seperti 

  • Jumlah yang diinsuranskan
  • Had Indemniti/had dasar
  • Anggaran seperti daftar gaji, pusing ganti, pendapatan yuran, eksport/import
  • Jadual kenderaan
  • Sambungan dasar dan had dalaman 

1.3 Domain Klinikal / NER Perubatan

Pengenalpastian masalah, struktur anatomi, perubatan, prosedur daripada rekod perubatan seperti EHR; biasanya tidak berstruktur dan memerlukan pemprosesan tambahan untuk mengekstrak maklumat berstruktur. Ini selalunya rumit dan memerlukan pakar domain daripada penjagaan kesihatan untuk mengekstrak entiti yang berkaitan.

Anotasi frasa utama (kp)

2. Frasa utama Anotasi (KP)

Ia mengenal pasti frasa nama diskret dalam teks. Frasa nama mungkin sama ada mudah (cth kata kepala tunggal seperti kata nama, kata nama khas atau kata ganti nama) atau kompleks (cth frasa nama yang mempunyai kata kepala bersama-sama pengubah suai yang berkaitan)

3. Anotasi PII

PII merujuk kepada Maklumat Pengenalan Peribadi. Tugas ini melibatkan anotasi sebarang pengecam utama yang boleh dikaitkan kembali dengan identiti seseorang.

Anotasi pii
Anotasi Phi

4. Anotasi PHI

PHI merujuk kepada Maklumat Kesihatan Dilindungi. Tugas ini melibatkan anotasi 18 pengecam pesakit utama seperti yang dikenal pasti di bawah HIPAA, untuk menyahkenal pasti rekod/identiti pesakit.

5. Anotasi Insiden

Pengenalpastian maklumat seperti siapa, apa, bila, di mana tentang sesuatu peristiwa cth. Serangan, penculikan, Pelaburan dll. Proses anotasi ini mempunyai langkah berikut:

Pengenalan entiti

5.1. Pengenalan Entiti (cth. Orang, tempat, organisasi, dsb.)

Pengenalan entiti

5.2. Pengenalpastian perkataan yang menunjukkan kejadian utama (iaitu perkataan pencetus)

Pengenalan entiti

5.3. Pengenalpastian hubungan antara pencetus dan jenis entiti

Kenapa Shaip?

Pasukan Dedikasi

Dianggarkan bahawa saintis data menghabiskan lebih 80% masa mereka dalam penyediaan data. Dengan penyumberan luar, pasukan anda boleh menumpukan pada pembangunan algoritma yang mantap, meninggalkan bahagian yang membosankan untuk mengumpulkan set data pengecaman entiti yang dinamakan kepada kami.

Skalabiliti

Model ML purata memerlukan pengumpulan dan penandaan sebahagian besar set data bernama, yang memerlukan syarikat untuk menarik sumber daripada pasukan lain. Dengan rakan kongsi seperti kami, kami menawarkan pakar domain yang boleh ditingkatkan dengan mudah apabila perniagaan anda berkembang.

Kualiti yang lebih baik

Pakar domain yang berdedikasi, yang memberi penjelasan dari hari ke hari - setiap hari - akan melakukan pekerjaan yang lebih baik jika dibandingkan dengan pasukan, yang perlu menampung tugas anotasi dalam jadual sibuk mereka. Tidak perlu dikatakan, ia menghasilkan output yang lebih baik.

Kecemerlangan Operasi

Proses jaminan kualiti data kami yang terbukti, pengesahan teknologi dan pelbagai peringkat QA, membantu kami memberikan kualiti terbaik dalam kelasnya yang melebihi jangkaan.

Keselamatan dengan Privasi

Kami diperakui untuk mengekalkan standard tertinggi keselamatan data dengan privasi semasa bekerja dengan pelanggan kami untuk memastikan kerahsiaan

Harga Berdaya Saing

Sebagai pakar dalam menyusun, melatih dan mengurus pasukan pekerja mahir, kami boleh memastikan projek dihantar mengikut bajet.

Ketersediaan & Penghantaran

Penyampaian data, perkhidmatan & penyelesaian tepat pada masanya & tepat masa rangkaian

Tenaga Kerja Global

Dengan kumpulan sumber dalam pesisir & luar pesisir, kami boleh membina dan menskalakan pasukan seperti yang diperlukan untuk pelbagai kes penggunaan.

Orang, Proses & Platform

Dengan gabungan tenaga kerja global, platform teguh & proses operasi yang direka oleh tali pinggang hitam 6 sigma, Shaip membantu melancarkan inisiatif AI yang paling mencabar.

Shaip hubungi kami

Ingin membina data latihan NER anda sendiri?

Hubungi kami sekarang untuk mengetahui cara kami boleh mengumpul set data NER tersuai untuk penyelesaian AI/ML unik anda

  • Dengan mendaftar, saya bersetuju dengan Shaip Polisi Laman Web and Syarat Perkhidmatan dan memberikan persetujuan saya untuk menerima komunikasi pemasaran B2B daripada Shaip.

Pengiktirafan Entiti Dinamakan adalah sebahagian daripada Pemprosesan Bahasa Semulajadi. Objektif utama NER adalah untuk memproses data berstruktur dan tidak berstruktur serta mengelaskan entiti yang dinamakan ini ke dalam kategori yang telah ditetapkan. Beberapa kategori biasa termasuk nama, lokasi, syarikat, masa, nilai kewangan, acara dan banyak lagi.

Secara ringkasnya, NER berurusan dengan:

Pengiktirafan/pengesan entiti bernama – Mengenal pasti perkataan atau siri perkataan dalam dokumen.

Pengelasan entiti bernama – Mengelaskan setiap entiti yang dikesan ke dalam kategori yang telah ditetapkan.

Pemprosesan Bahasa Asli membantu membangunkan mesin pintar yang mampu mengekstrak makna daripada pertuturan dan teks. Pembelajaran Mesin membantu sistem pintar ini meneruskan pembelajaran dengan melatih sejumlah besar set data bahasa semula jadi. Secara amnya, NLP terdiri daripada tiga kategori utama:

Memahami struktur dan peraturan bahasa – Sintaksis

Menghasilkan makna perkataan, teks, dan pertuturan dan mengenal pasti hubungan mereka – Semantik

Mengenal pasti dan mengenali perkataan yang dituturkan dan mengubahnya menjadi teks - Ucapan

Beberapa contoh biasa pengkategorian entiti yang telah ditetapkan ialah:

Orang: Michael Jackson, Oprah Winfrey, Barack Obama, Susan Sarandon

Location: Kanada, Honolulu, Bangkok, Brazil, Cambridge

Organisasi: Samsung, Disney, Universiti Yale, Google

Masa: 15.35, 12 PM,

Pendekatan yang berbeza untuk mencipta sistem NER ialah:

Sistem berasaskan kamus

Sistem berasaskan peraturan

Sistem berasaskan pembelajaran mesin

Sokongan Pelanggan Diperkemas

Sumber Manusia yang Cekap

Klasifikasi Kandungan Ringkas

Mengoptimumkan Enjin Carian

Pengesyoran Kandungan Tepat